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The hydrogen-bond-acceptor (HBA) templates 2,3-bis(4-
methylenethiopyridyl)naphthalene (2,3-nap) and 1,8-bis(4-
pyridyl)naphthalene (1,8-dpn) are used to assemble (E,E)-
2,5-dimethylmuconic acid (dmma) in the solid state for an
intermolecular [2 + 2] photocycloaddition. Co-crystallisation
of 2,3-nap with dmma affords an 1D hydrogen-bonded
polymer that is photostable while 1,8-nap affords a 0D
hydrogen-bonded assembly that is photoactive. The diene
stacks in-phase and reacts to give a syn monocyclobutane
in up to 55% yield.

Small ditopic molecules that act as hydrogen-bond templates have
emerged as tools to control intermolecular [2 + 2] photodimeri-
sations of olefins in solids.1 The templates can serve as molecular
equivalents of two hands to assemble and stack alkenes within
discrete, or 0D, co-crystalline supramolecular assemblies into
the appropriate geometry2 for photoreaction. To date, hydrogen-
bond-donor (HBD) templates (e.g. resorcinol) have gained the
most attention, providing efficient access to molecules difficult to
achieve in solution (e.g. [2.2]paracyclophane, ladderanes).3,4

In this manuscript, we describe our initial work to employ
hydrogen-bond-acceptor (HBA) templates, in the form of 2,3-
bis(4-methylenethiopyridyl)naphthalene (2,3-nap)5 and 1,8-bis(4-
pyridyl)naphthalene (1,8-dpn),6 to direct the reactivity of a 1,3-
diene, in the form of (E,E)-2,5-dimethylmuconic acid (dmma),
in the solid state. We have reported that pure dmma under-
goes both a dimerisation and trimerisation in the solid state
to afford a mixture of products; namely, a monocyclobutane
dimer and an unusual bicyclobutyl trimer.7 The products arise
from ‘out-of-phase’ stacking of the diene in the solid (Scheme
1a).8 1,3-Dienes such as dmma are familiar reactants in or-
ganic solid-state photochemistry,9 known to undergo cycloaddi-

Department of Chemistry, University of Iowa, Iowa City, Iowa, USA.
E-mail: len-macgillivray@uiowa.edu; Fax: +1 319-335-1270; Tel: +1 319-
335-3504
† This article is published as part of a themed issue in honour of Yoshihisa
Inoue’s research accomplishments on the occasion of his 60th birthday.
‡ Electronic supplementary information (ESI) available: Details of 1H
NMR studies and structure solutions by single-crystal X-ray diffrac-
tion. CCDC reference numbers 802315 (2,3-nap)·(dmma), 802316 (1,8-
dpn)·(dmma), and 802317 2(1,8-dpn)·(cbda). For ESI and crystallographic
data in CIF or other electronic format see DOI: 10.1039/c1pp05077j
§ These authors contributed equally to the manuscript.

Scheme 1 Reactivity of dmma and involving 2,3-nap and 1,8-dpn.

tions, polymerizations,10 and isomerizations.11 The acid groups
also make the resulting cyclobutanes attractive as ligands in
coordination-driven self-assembly12 and, in principle, amenable
to a variety of post-synthetic transformations.13 Both 2,3-nap and
1,8-dpn have been demonstrated by us, and others, to assemble the
monoolefin fumaric acid (fum) within 0D co-crystalline hydrogen-
bonded assemblies that undergo [2 + 2] photodimerisation to give
rctt-1,2,3,4-tetracarboxylic acid (cbta) in up to quantitative yield.
Here, co-crystallisations of dmma with 2,3-nap and 1,8-dpn afford
1D and 0D hydrogen-bonded assemblies (2,3-nap)·(dmma)¶ and
(1,8-nap)·(dmma)‖ that are photostable and photoactive, respec-
tively (Scheme 1b). In contrast to the pure solid, 1,8-dpn enforces
the diene into a stacked in-phase geometry that reacts to give the
syn monocycobutane rctt-3,4-bis((E)-2-carboxyprop-1-enyl)-1,2-
dimethylcyclo-butane-1,2-dicarboxylic acid (cbda) stereospecifi-
cally in up to 55% yield. The formation of the photostable 1D
polymer is attributed to the conformational flexibility of 2,3-nap,
which adopts an anti conformation in the solid. Our results, thus,

1384 | Photochem. Photobiol. Sci., 2011, 10, 1384–1386 This journal is © The Royal Society of Chemistry and Owner Societies 2011
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also emphasize a critical role of template conformation to direct
the reactivity of alkenes in solids.14,15

We have recently shown that dmma self-assembles in the
solid state to form 1D hydrogen-bonded polymers sustained by
carboxylic acid dimers.7 Neighbouring 1D strands packed such
that the nearest-neighbour carbon-carbon double (C C) bonds
assembled parallel and in close proximity. The stacking of the
olefins placed the dienes in an out-of-phase geometry that, upon
UV-irradiation, afforded both an anti monocyclobutane dimer
and a bicyclobutyl trimer as products. A total of two HBA
templates have been reported to date. More specifically, 2,3-nap
and 1,8-dpn have been used to assemble fum face-to-face in 0D
assemblies that react to generate cbta. The ability of the bipyridines
to enforce face-to-face stacking of fum for a photodimerisation
prompted us to determine whether each HBA template could be
used to achieve in-phase reactivity of dmma.

When 2,3-nap was co-crystallised with dmma (ratio: 1 : 1)
from acetonitrile, light-brown needles of (2,3-nap)·(dmma) formed
during a period of 24 h. The composition of (2,3-nap)·(dmma)
was confirmed by 1H NMR spectroscopy and single-crystal X-ray
diffraction.

As shown in Fig. 1, the components of (2,3-nap)·(dmma) self-
assemble to form a 1D polymer held together by O–H ◊ ◊ ◊ N
hydrogen bonds (O(1) ◊ ◊ ◊ N(1) 2.584(2) Å) (Fig. 1a). In this
arrangement, 2,3-nap adopts, in contrast to (2,3-nap)·(fum) yet
similar to the pure bipyridine,5 an anti conformation (dihedral
angle: 42.1◦) with the S-atoms pointing in opposite directions.
Neighbouring 1D polymers lie parallel and offset, with the
naphthalene units participating in edge-to-face p–p forces with
4-pyridyl groups. As a consequence of the assembly process, the
C C bonds of the dienes are separated by approximately 9.6 Å
within and 9.7 Å between adjacent 1D polymers, respectively (Fig.
1b). The geometries lie well outside the criteria of Schmidt for a
photodimerisation in a solid. In line with the structure of (2,3-
nap)·(dmma), exposure of a powdered crystalline sample of the co-
crystal to UV-irradiation (450 W broad-band UV lamp) revealed
the solid to be photostable.

Fig. 1 Perspective of (2,3-nap)·(dmma): (a) 1D polymer and (b) offset
stacking along crystallographic ac-plane.

Whereas (2,3-nap)·(dmma) is photostable, the co-crystal (1,8-
dpn)·(dmma) is photoactive. When 1,8-dpn was co-crystallised
with dmma (ratio: 1 : 1) from 1 : 10 (v/v) methanol–ethyl acetate,
light-yellow cubes of (1,8-dpn)·2(dmma) formed after a period of
24 h. The composition of 2(1,8-dpn)·2(DMMA) was confirmed
by 1H NMR spectroscopy and single-crystal X-ray diffraction.

As shown in Fig. 2, the components of (1,8-dpn)·(dmma)
form, in contrast to (2,3-nap)·(dmma), a discrete hydrogen-bonded
assembly, which sits around a crystallographic centre of inver-
sion, sustained by four O–H ◊ ◊ ◊ N hydrogen bonds (O(1) ◊ ◊ ◊ N(1)
2.676(2) Å) (Fig. 2a). In this arrangement, 1,8-dpn, being more
rigid than 2,3-nap, enforces the diene into an in-phase stacked
geometry wherein the C C bonds lie parallel and separated by
3.69 Å. The geometry places each C C bond in a position suitable
for [2 + 2] photodimerisation. Nearest-neighbour assemblies lie
orthogonal and separated at a distance >10 Å (Fig. 2b), which
means the olefins within the 0D hydrogen-bonded structures
possess the C C bonds able to undergo photoreaction.

Fig. 2 Perspective of (1,8-dpn)·(dmma): (a) four-component assembly
and (b) nearest-neighbour assemblies along crystallographic b-axis.

To determine the reactivity of the solid, a powdered crystalline
sample of 2(1,8-dpn)·2(dmma) was subjected to UV-irradiation
(450 W broad-band UV lamp) for a period of approximately
70 h. As determined by 1H NMR spectroscopy (solvent: DMSO-
d6), a monocyclobutane formed stereospecifically in 55% yield.
The generation of a monocyclised product was evidenced by the
emergence of both alkene and cyclobutane protons at 6.36 ppm
and 3.70 ppm, respectively (ratios: 1 : 1). The chemical shifts of the
peaks were different than the recently reported anti photodimer.7

Moreover, given that dmma was assembled in-phase in 2(1,8-
dpn)·2(dmma) for reaction, the cyclobutane product was assigned
as the syn photodimer.

The structure of the cyclobutane photoproduct was confirmed
via single-crystal X-ray diffraction. When the reacted solid was
dissolved in 4 : 1 hexanes:ethyl acetate (v/v), a white precipitate
involving 1,8-dpn and the cyclobutane (ratio: 2 : 1) immediately
formed. Recrystallisation from methanol afforded light-yellow
needles after a period of 24 h. As shown in Fig. 3, cbda and 1,8-dpn
assemble to form a three-component complex** sustained by four
O–H ◊ ◊ ◊ N hydrogen bonds (O(1) ◊ ◊ ◊ N(1) 2.717(3) Å, O(3) ◊ ◊ ◊ N(2)
2.661(3) Å) (Fig. 3a). The pairs of acid groups attached to the
unsymmetrical cyclobutane ring lie splayed, with each type of
acid group interacting with an identical template molecule. The
complexes pack in the crystallographic ab-plane to form 2D layers
sustained by edge-to-face p–p interactions involving pyridyl and
naphthalene units of the templates (Fig. 3b).

This journal is © The Royal Society of Chemistry and Owner Societies 2011 Photochem. Photobiol. Sci., 2011, 10, 1384–1386 | 1385
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Fig. 3 Perspective of 2(1,8-dpn)·(cbda): (a) discrete three-component
assembly and (b) packing of assemblies in ab-plane.

In summary, we have demonstrated that 1,8-dpn assembles
dmma for an in-phase intermolecular [2 + 2] photodimerisation
that generates cbda. The conformationally more flexible 2,3-nap
results in a 1D hydrogen-bonded polymer that is photostable.
With the reactivity of a diene diacid achieved, we are currently
developing derivatives of both families of HBA templates so
that libraries of bipyridines are available and can be applied in
template switching16 for the construction of more complex product
molecules.

We thank the National Science Foundation (LRM, DMR-
0133138) and the Petroleum Research Fund of the American
Chemical Society (Type AC Grant) for financial support.

Notes and references

¶ Crystal data for (2,3-nap)·(dmma): C22H18N2S2·C8H10O4, Mr = 544.66 g
mol-1, monoclinic, a = 12.8295(14) Å, b = 14.5618(16) Å, c = 14.3340(15) Å,
a = 90◦, b = 95.724(5)◦, g = 90◦, V = 2664.5(5) Å3, T = 150(2) K, space
group C2/c, Z = 4, 8919 reflections measured, 2351 independent reflections
(Rint = 0.0324). The final R1 values were 0.0361 (I > 2s(I)). The final wR(F 2)
values were 0.0946 (I > 2s(I)). The final R1 values were 0.047 (all data).
The final wR(F 2) values were 0.099 (all data) (CCDC 802315).
‖ Crystal data for (1,8-dpn)·(dmma): C20H14N2

∑C8H10O4, Mr = 452.49 g
mol-1, monoclinic, a = 14.5252(16) Å, b = 6.9630(8) Å, c = 23.665(3) Å, a =
90◦, b = 102.029(5)◦, g = 90◦, V = 2340.9(5) Å3, T = 190(2) K, space group
P21/n, Z = 4, 15098 reflections measured, 4117 independent reflections
(Rint = 0.0388). The final R1 values were 0.0394 (I > 2s(I)). The final
wR(F 2) values were 0.0994 (I > 2s(I)). The final R1 values were 0.0597
(all data). The final wR(F 2) values were 0.1078 (all data) (CCDC 802316).
** Crystal data for (1,8-dpn)·(cbda): C16H20O8

∑2(C20H14N2), Mr = 904.98 g
mol-1, monoclinic, a = 31.686(4) Å, b = 9.6115(11) Å, c = 29.601(3) Å, a =
90◦, b = 93.685(5)◦, g = 90◦, V = 8996.3(18) Å3, T = 150(2) K, space group

C2/c, Z = 8, 27238 reflections measured, 7918 independent reflections
(Rint = 0.0601). The final R1 values were 0.0579 (I > 2s(I)). The final
wR(F 2) values were 0.1483 (I > 2s(I)). The final R1 values were 0.0963
(all data). The final wR(F 2) values were 0.1634 (all data) (CCDC 802317).
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16 T. Friščić and L. R. MacGillivray, Chem. Commun., 2003,
1306.

1386 | Photochem. Photobiol. Sci., 2011, 10, 1384–1386 This journal is © The Royal Society of Chemistry and Owner Societies 2011

Pu
bl

is
he

d 
on

 0
9 

A
pr

il 
20

11
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
M

as
sa

ch
us

et
ts

 -
 B

os
to

n 
on

 1
9/

02
/2

01
4 

14
:4

7:
27

. 

View Article Online

http://dx.doi.org/10.1039/c1pp05077j

